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Perform Physical Simulation Human-Preferred Motions

A Fall Failure in the simulator! Successful simulation!

Motions with Less Human-PreferencePerform Physical Simulation

T T

Figure 1: A motion that looks realistic does not necessarily mean it is physically feasible. Top-left: Motion appears realistic
and semantically meaningful to the human eye, yet fails in physics simulation, resulting in a fall (bottom-left). Top-right:
Unnatural motion in human perception executes successfully in simulation (bottom-right). This reveals a discrepancy between
human perception and physical laws.

Abstract
Human motion generation has found widespread applications in
AR/VR, film, sports, and medical rehabilitation, offering a cost-
effective alternative to traditional motion capture systems. How-
ever, evaluating the fidelity of such generated motions is a crucial,
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multifaceted task. Although previous approaches have attempted at
motion fidelity evaluation using human perception or physical con-
straints, there remains an inherent gap between human-perceived
fidelity and physical feasibility. Moreover, the subjective and coarse
binary labeling of human perception further undermines the de-
velopment of a robust data-driven metric. We address these issues
by introducing a physical labeling method. This method evaluates
motion fidelity by calculating the minimum modifications needed
for a motion to align with physical laws. With this approach, we
are able to produce fine-grained, continuous physical alignment
annotations that serve as objective ground truth. With these an-
notations, we propose PP-Motion, a novel data-driven metric to
evaluate both physical and perceptual fidelity of human motion.
To effectively capture underlying physical priors, we employ Pear-
son’s correlation loss for the training of our metric. Additionally,
by incorporating a human-based perceptual fidelity loss, our metric
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can capture fidelity that simultaneously considers both human per-
ception and physical alignment. Experimental results demonstrate
that our metric, PP-Motion, not only aligns with physical laws but
also aligns better with human perception of motion fidelity than
previous work.
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1 Introduction
Human motion generation has found widespread applications in
modern industrial production. Whether in AR/VR games, film, con-
tent creation, sports, or medical rehabilitation, generated motions
can replace complex motion capture systems and on-site filming
with actors. Realistic human motion generation can produce large
quantities of poses at very low cost, potentially saving significant
labor and filming expenses. Therefore, evaluating the fidelity of gen-
erated motions is a problem closely tied to real-world applications.
However, it remains a challenging task to design a comprehensive
evaluation metric due to the multifaceted influence factors.

Previous methods, such as MotionCritic [72], have made good
progress in assessing human motion fidelity. MotionCritic intro-
duces a dataset, MotionPercept, where human subjects judge the
fidelity of a motion. These ratings are later used as labels to train a
motion fidelity metric that aligns with human perception. Although
human perception of motion fidelity is reasonably accurate and
practically useful, the fundamental standard for motion fidelity
should not be based solely on human perception. It is even more
important to consider whether the motion conforms to physical
laws. A motion that looks realistic does not necessarily mean it
is physically feasible. For example, as shown in Fig. 1, the motion
on the top-left appears realistic and semantically meaningful to
human eyes, yet when simulated in a physics engine, the motion
cannot be completed and results in a fall on the ground (bottom-
left). Conversely, the motion on the top-right may look unusual
and meaningless, but it can be executed well in a physics simula-
tion (bottom-right). These examples reveal a discrepancy between
human perception and physical laws. Moreover, human annota-
tions of fidelity are subjective; different annotators may have dif-
ficulty quantifying the fidelity of the same motion consistently.
In MotionCritic [72], the dataset employs a binary “better/worse”
classification to avoid the quantification issues of human labeling.
However, such coarse labeling lacks fine-grained information and
poses challenges for learning a data-driven metric.

To address these two issues, we propose a data-driven method to
evaluate motion fidelity that aligns with physical laws. We achieve
this by calculating the minimum distance between the test motion
and a motion that complies with physical laws. A small minimal
distance indicates a high fidelity of the input motion, whereas a
large minimal distance implies low fidelity. With this physically
grounded definition of fidelity, we can establish fine-grained con-
tinuous labels for physical law alignments. In addition, we design
a framework that trains a metric, named PP-Motion, by simulta-
neously utilizing fine-grained physical labels and coarse, discrete
human perceptual labels. By designing loss functions that better
suit the fine-grained labels, we can more effectively learn the under-
lying physical law priors. With this approach, we are able to train
our metric to better align with physical laws. Furthermore, since
human perception is inherently correlated with physical feasibility,
this approach also improves the potential for metric design to align
with human judgments by learning physical principles.

Specifically, we adopt the motions generated inMotionCritic [72]
and create new physically aligned annotations for them. Inspired
by PHC [48], we refine every motion in our dataset using reinforce-
ment learning with the help of a physics simulator. We use this
approach to make only minimal adjustments while making each
motion conform to physical laws. We then compare the difference
between the adjusted motion and the original motion to serve as the
annotation for physical alignment in the dataset. Such annotations
not only closely adhere to our definition of physical fidelity and of-
fer strong interpretability, but also provide continuous, fine-grained
labels. These fine-grained annotations offer rich information for
the supervision of subsequent metric training. To better learn from
these fine-grained physical annotations, we design loss functions
based on data correlation, such as Pearson’s correlation loss. Unlike
previous classification losses, correlation loss can effectively cap-
ture the intrinsic correlations within the data rather than simply
comparing categories or numeric values. Without the constraint
on scales, the correlation loss can be more easily combined with
existing human perception loss functions, enabling our metric to
align with both human perception and physical laws, and providing
the potential for mutual reinforcement between the two aspects.

In summary, our contributions are as follows:
• We propose a novel fidelity evaluation method, PP-Motion,
for human motions, which takes into account both physical
feasibility and human perception. Our method can evaluate
whether a motion is realistically aligned with physical laws
and human perception.

• We define and design a fine-grained physical alignment an-
notation and provide this annotation for existing datasets.
This annotation serves as fine-grained physical ground truth
for training our metric and has the potential to benefit sub-
sequent metric design.

• We design an effective learning framework that leverages
these fine-grained physical annotations. By incorporating
correlation-based loss functions (i.e., Pearson’s correlation
loss), our approach better learns the physical priors from
the labels, while seamlessly combining with existing human
perceptual loss functions. This design not only ensures that
our metric adheres to physical laws but also has the potential
to enhance human-percepted fidelity.
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2 Related Work
2.1 Human Motion Generation
Human motion generation aims to automatically generate natural,
fluent, and physically plausible human pose sequences, playing
a central role in character animation, human-robot interaction,
and embodied agents acting in complex environments. With wide
applications and high practical value, motion generation is a foun-
dational problem in both academic and industrial fields. Fueled by
rapid advances in deep learning [35], especially generative mod-
els [16, 25, 33, 56, 59], extensive research has focused on generating
human motions from multimodal signals, including text, action,
speech, and music. Action-to-motion [5, 9, 21, 47] aims to synthe-
size motions from predefined action labels, evolving from retrieval-
based to label-conditioned generative models. Text-to-motion [12,
18, 20, 28, 52–54, 63, 66, 67, 69, 74, 80, 83, 85] focuses on mapping
natural language to motion, bridging linguistic semantics and phys-
ical embodiment. Beyond text, audio-driven motion generation has
also seen progress. Music-to-dance methods [37, 39, 61, 65, 68] syn-
thesize motions aligned with musical features such as beat and
style. Speech-to-gesture approaches [2, 7, 15, 22, 34, 36, 55, 78] em-
phasize temporal alignment and semantic expressiveness to convey
emotion. Further studies on controllable and editable motion gener-
ation [6, 11, 26, 31, 60, 71, 77, 84] focus on generating high quality
long-term motions while maintaining maximum faithfulness to
various multimodal control conditions. Considering the growing
range of real-world applications and generative methods of motion
generation, it’s critical to establish comprehensive evaluations for
generated motions.

2.2 Human Motion Evaluation
Designing evaluation metrics for human motion is a complicated
and challenging problem. Existing evaluation metrics can mainly
be divided into three categories: (1) distance-based metrics, (2)
human-perception-based metrics, and (3) physical plausibility met-
rics. The most commonly used evaluation metrics in early works
are distance-based. Distance-based metrics such as Position, Ve-
locity, and Acceleration Errors [1, 4, 8, 10, 15, 27, 32, 34, 36, 43–
46, 50, 52, 65, 73, 75, 81, 86] compare generatedmotions with ground
truth, but struggle to capture the diversity of plausible motions. To
address this, feature-based metrics [2, 7, 13, 14, 17, 22, 55, 78, 86]
are proposed to provide more refined semantic abstraction to cal-
culate distance for similarity assessment between generated and
ground truth motions. Among all these distance-based metrics,
Fréchet Inception Distance (FID) and average Euclidean distance
(DIV) in feature space are widely used to evaluate motion quality
and diversity [9, 19, 30, 37–39, 61, 67, 68, 82, 85, 86, 88]. However,
FID and DIV measure the distance between or within distributions,
making them unsuitable for evaluating the quality of a single ac-
tion. Feature-space metrics also depend heavily on the effectiveness
of the feature extractor, where certain features may lack inter-
pretability. To better assess motion naturalness, smoothness, and
plausibility, Wang et al. [72] propose MotionCritic, a data-driven
model trained on human-annotated motion preferences. Although
MotionCritic aligns well with human perception, there remains a
huge gap between motions deemed feasible by humans and those

grounded in physical laws. For physical plausibility evaluation, re-
searchers have proposed rule-based metrics such as foot-ground
penetration [24, 57, 58, 64], foot contact [57, 58, 68], foot skating
rate [3, 42, 76], and floating [23]. However, these metrics are often
heuristic, threshold-sensitive, and too limited to capture overall
physical fidelity. Physdiff [79] proposes an overall physics error
metric, but remains a naive aggregation of penetration, foot skat-
ing, and floating metrics. Li et al. [40] further propose the imitation
failure rate (IFR), using a physics engine to test whether a motion
can be successfully simulated. However, IFR only gives a binary
judgment, offering no graded assessment. Thus, a comprehensive
evaluation method that jointly considers human perception and
physical feasibility remains an open challenge.

3 Method
3.1 Problem Formulation
In our approach to designing a motion evaluation metric, the mea-
surement system is defined as follows. For any human motion 𝑥 ,
the aim is to establish a function 𝐹 (·) that evaluates the fidelity 𝑠
of the motion sequence:

𝑠 = 𝐹 (𝑥 ;𝜃 ), (1)

where 𝐹 (𝑥 ;𝜃 ) is a neural network architecture with parameters 𝜃 .
The subsequent sections introduce our methodology for both

architecting the measurement function 𝐹 (𝑥 ;𝜃 ) and optimizing its
parameters. The training procedure can be summarized by the
optimization objective:

min
𝜃

Lprec (𝐹 (𝑥 ;𝜃 ), 𝑦prec) + 𝜆Lphy (𝐹 (𝑥 ;𝜃 ), 𝑦phy), (2)

where Lprec and Lphy are the perceptual and physics losses, 𝑦prec
and 𝑦phy are the perceptual and physics supervision, and 𝜆 is a
balance weight for these two terms of loss functions. The objective
is to jointly optimize the measurement accuracy for both physical
and perceptual fidelity.

3.2 Physical-Perceptual Motion Metric
The design of our metric is illustrated in Fig. 2. Our network takes a
human motion sequence as input. First, the motion is fed into a mo-
tion encoder to extract spatio-temporal features. A fidelity decoder
is then used to decode these features into a fidelity score. We use
annotations from two different sources, physical and perceptual,
to supervise the metric training. On the physical side, we analyze
motion fidelity using a physics simulator and generate fine-grained
annotations for training supervision. A correlation loss between the
metric output and the physical annotations encourages the metric
to learn from those physical annotations effectively. Meanwhile,
the network also learns fidelity from human annotations, ensuring
that the fidelity score aligns closely with both physical annotation
and human perception.

Motion encoder. The motion encoder plays a critical role in
determining the quality of the motion features. To extract both
spatial and temporal information necessary for fidelity evaluation,
we adopt a state-of-the-art spatio-temporal motion encoder. In our
experiments, we follow the design proposed in [87]. This encoder is
built from 𝑁 dual-stream fusion modules, each containing branches
for spatial and temporal self-attention and MLP. The spatial layers
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Figure 2: Our metric design and training pipeline. The network takes a human motion sequence as input, which is processed by
a motion encoder to extract spatiotemporal features. These features are then decoded into a fidelity score by a fidelity decoder.
The network is trained in a supervised fashion using fine-grained physical annotations alongside human perceptual labels.

capture correlations among different joints within the same time
step, while the temporal layers focus on the dynamics of individual
joints. This dual-stream design effectively captures comprehensive
features required for assessing motion fidelity.

Fidelity decoder. We introduce a fidelity decoder module to in-
terpret motion fidelity from the extracted features. Since our fidelity
score is a fine-grained continuous value rather than a coarse classifi-
cation, we design a fidelity decoder to extract the fidelity score from
the features. Moreover, given the strong representation capability
of our backbone, we can leverage the encoder to extract and fit the
fidelity features during training, which allows us to simplify the
fidelity decoder design. In practice, we adopt an MLP-based design
for the fine-grained fidelity decoder. This simple design not only
meets the requirement for producing detailed scores but also avoids
imposing a significant extra burden on network training.

Physical supervision. Physical supervision is a core module
of our method, and it consists of two parts: physical accuracy labels
and the corresponding supervision strategy.

To evaluate physical fidelity, we develop a scoring system based
on feedback from a physics simulator. For a given input motion,
we generate a motion that is as close as possible to the input while
satisfying the physical constraints of the simulator (i.e., the nearest
regularized motion). The difference between the input pose and
the nearest regularized motion represents the motion’s physical
rationality. For more details on generating the nearest regularized
motion, please refer to Sec. 4. Intuitively, if a pose that is initially
physically implausible can be made physically reasonable with only
minor adjustments, it is considered to have high physical fidelity
(i.e., a small fidelity error). However, if major modifications are
needed, the pose is considered to have low physical fidelity (i.e., a
large fidelity error). This design enables fine-grained continuous
annotation and measurement of physical fidelity.

Our approach to physical supervision primarily focuses on align-
ing the network’s output with the physical annotations. We have
observed that, for designing a physically aligned fidelity score, the
absolute value of the output score is less critical than its correla-
tion with the physical labels. Therefore, our supervision targets the
correlation between the fidelity score and the physical annotations
rather than direct numerical differences as in traditional regression
tasks. To this end, we use Pearson’s correlation loss as the core
training loss, as detailed in Sec. 3.3.

Perceptual supervision. For human-aligned fidelity evaluation,
our network also leverages the annotations and training strategy
provided by [72]. Specifically, the fidelity annotations used in this
branch are derived from human subjects. During training, given
a pair of motions with "better" and "worse" labels provided by hu-
man subjects, we train a network using a perceptual loss, which
encourages the model to assign higher scores to the "better" mo-
tion than to the "worse" motion. Notably, even though we did not
modify the original training strategy or annotations for this part,
our joint training under both physical and perceptual supervision
results in a metric that aligns with human perception even better
than a model optimized solely for human alignment. This outcome
demonstrates that physical and perceptual annotations are well
aligned and that fine-grained physical alignment can further boost
human perceptual alignment.

3.3 Training Loss
Our loss design is mainly divided into two parts: a perceptual loss
based on binary human fidelity scoring labels (i.e., better/worse in
each pair), and a physical loss based on continuous physical labels.

Perceptual Loss. Our perceptual loss follows the design in [72].
For a better-worse motion pair 𝑥 (ℎ) and 𝑥 (𝑙 ) , the perceptual loss is
defined as:

Lpercept = −E(𝑥 (ℎ) ,𝑥 (𝑙 ) )
[
log𝜎

(
𝐹
(
𝑥 (ℎ)

)
− 𝐹

(
𝑥 (𝑙 )

) )]
, (3)

where 𝐹 (·) is our designed metric, and 𝜎 (·) is the sigmoid function.
Physical Loss. Our physical loss is designed to learn from the

fine-grained physical annotation. We use a Pearson’s correlation
loss [51] to learn for physical annotation. The correlation loss is
defined as:

Lcorr = −
∑𝑛
𝑖=1 (𝑥𝑖 − ¯̂𝑥) (𝑥𝑖 − 𝑥)√︃∑𝑛

𝑖=1 (𝑥𝑖 − ¯̂𝑥)2
√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2
, (4)

where 𝑥𝑖 and 𝑥𝑖 indicate the predicted and ground truth motion
fidelity scores of the sample 𝑖 in the dataset. 𝑛 is the total number
of samples in the dataset. The average predicted motion fidelity
and ground truth motion fidelity are then defined as ¯̂𝑠 = 1

𝑛

∑𝑛
𝑖=1 𝑠𝑖

and 𝑠 = 1
𝑛

∑𝑛
𝑖=1 𝑠𝑖 .

Total Loss. Our total loss function can then be represented as:

L = Lpercept + 𝜆Lcorr, (5)



PP-Motion: Physical-Perceptual Fidelity Evaluation for Human Motion Generation MM ’25, October 27–31, 2025, Dublin, Ireland

Table 1: Annotation statistics on MotionPercept dataset.

Annoation MotionCritic Ours
Grain Binary Continous
Annoation type Perceptual Physical
Categorization Quadruples Per-prompt
Score Distribution 𝑝 (0) = 0.75, 𝑝 (1) = 0.25 ∼ 𝑁 (0, 1)

Table 2: Quantitative results on imitating motion sequences
of MotionPercept, which has three subsets: MDM-Train,
MDM-Val, and FLAME.Weuse pose-basedmetrics to compare
the imitation performance betweenusing only the pretrained
model and applying per-sequence fine-tuning. Recon. Err.,
MPJPE, and PA-MPJPE are measured in millimeters (mm).

MotionPercept-MDM-Train
Recon. Err.↓ MPJPE↓ PA-MPJPE↓ 𝑒acc↓ 𝑒vel↓

Whole dataset pretrain 55.72 36.76 30.60 4.37 6.23
Per data fine-tune 49.65 32.95 27.37 4.03 5.76

MotionPercept-MDM-Val
Recon. Err.↓ MPJPE↓ PA-MPJPE↓ 𝑒acc↓ 𝑒vel↓

Whole dataset pretrain 55.49 36.88 30.68 4.27 6.07
Per data fine-tune 50.90 34.10 28.20 4.16 5.89

MotionPercept-FLAME
Recon. Err.↓ MPJPE↓ PA-MPJPE↓ 𝑒acc↓ 𝑒vel↓

Whole dataset pretrain 69.20 49.80 37.91 5.63 7.94
Per data fine-tune 53.76 38.33 31.35 5.32 7.26

where 𝜆 is the loss weight. The implementation details of model
training are provided in the supplementary material.

4 Dataset
4.1 MotionPercept Dataset
We use the MotionPercept [72] dataset to provide perceptual an-
notations and also provide generated motions for our physical
annotation. MotionPercept is a large-scale dataset of motion per-
ceptual evaluation, in which real humans are invited to select the
best or the worst from given motion sets. Each motion set has
4 motions generated by the state-of-the-art motion generation
models MDM [67] and FLAME [32] with the same action label
or text prompt. Specifically, the MDM model is trained on Human-
Act12 [21] and UESTC [29], resulting in a total of 17521 groups of
motions, each containing 4 motions. The FLAME model is trained
on HumanML3D [19], resulting in 201 groups of motions, each
group also comprising 4 motions.

4.2 Physical Annotation Generation
We propose a novel annotation method that leverages a physics
simulator to provide a fine-grained and interpretable measurement
of a motion’s physical accuracy. Specifically, we use the simulator to
identify a physically plausible motion 𝑥 ′ that is as close as possible
to the input motion 𝑥 . The physical error 𝑒𝑝 is then defined as the
𝑙2 norm of the difference between the two motions:

𝑒𝑝 = ∥𝑥 − 𝑥 ′∥2, (6)

where ∥ · ∥2 is 𝑙2 norm. To obtain an 𝑥 ′ that closely approximates 𝑥 ,
we propose using a physical correction network, 𝐹𝑝 (𝑥), is defined
as:

𝑥 ′ = 𝐹𝑝 (𝑥), (7)

where 𝑥 ′ is the output motion that is aligned with physical laws in
physical simulators.

The training of 𝐹𝑝 (𝑥) would require feedback from a physical
simulator. Since most state-of-the-art simulators are not designed
to backpropagate gradients, we used reinforcement learning to get
the physical fidelity feedback from the physical simulator. More-
over, we also constrain the output motion 𝑥 ′ to be close to the
input motion 𝑥 in terms of translation, rotation, linear velocity, and
angular velocity. Specifically, we use the network in PHC [48] as
our physical correction network to find 𝑥 ′ for each pose in the
MotionPercept [72] dataset. To achieve a lower difference while
still aligning with physical constraints, we use the physical reward
in PHC [48]. For timestamp 𝑡 , the reward can be represented as:

𝑟𝑡 = 𝑤 𝑗𝑝𝑒
−100∥𝑝′

𝑡−𝑝𝑡 ∥ +𝑤 𝑗𝑟𝑒
−10∥𝑞′𝑡⊖𝑞𝑡 ∥

+𝑤 𝑗 𝑣𝑒
−0.1∥𝑣′𝑡−𝑣𝑡 ∥ +𝑤 𝑗𝜔𝑒

−0.1∥𝜔 ′
𝑡−𝜔𝑡 ∥ ,

(8)

where 𝑝𝑡 , 𝑞𝑡 , 𝑣𝑡 , and 𝜔𝑡 are the translation, rotation, linear velocity,
and angular velocity of input motion 𝑥 at timestamp 𝑡 . 𝑝′𝑡 , 𝑞

′
𝑡 , 𝑣

′
𝑡 ,

and 𝜔 ′
𝑡 are the translation, rotation, linear velocity, and angular

velocity of the output motion 𝑥 ′ from the physical simulator at
timestamp 𝑤 𝑗𝑝 . 𝑤 𝑗𝑟 , 𝑤 𝑗𝑣 , and 𝑤 𝑗𝜔 are the loss weights. ⊖ is the
difference between 2 rotations. This reward function makes sure
the physical simulator output is close to the original pose, and still
aligns with physical laws. In training, we summarize the reward
function for all timestamps 𝑡 and get the optimal motion 𝑥 ′.

Our annotation generation contains 2 steps: First, we pretrain
the PHC network on the whole MotionCritic dataset using the re-
ward function Eq. (8). Second, we use the same reward function to
optimize every single motion in the MotionCritic dataset, so that it
will achieve a closer corrected motion for each input motion in the
dataset. In Tab. 2 we report the difference between the input motion
𝑥 and the corrected motion 𝑥 ′ after the whole dataset pretrain (step
1) and the per-data fine-tune (step 2), respectively. In these tables,
we use IsaacGym [49] simulator for physical simulation. Recon-
struction error (Recon. Err.) calculates the absolute mean per-joint
position error in world coordinates. MPJPE (Mean Per Joint Position
Error) measures the mean per-joint position error relative to the
root joint, while PA-MPJPE (Procrustes-Aligned MPJPE) evaluates
position error after optimal rigid alignment. We also compute ac-
celeration error 𝑒acc and velocity error 𝑒vel. From the results, we
observe that our per-data fine-tune result provides closer corrected
motion than the whole data pretrain step.

In Tab. 1, we also provide simple statistics and a comparison
with the previous annotation in MotionPercept. Our annotation
is fine-grained, physically aligned, and is normalized to a 𝑁 (0, 1)
normal distribution. In Fig. 3, we visualize the input motion along
with the final fine-tuned corrected motion. Our corrected motion
well aligns with physical laws.

5 Experiment Results
Comparison with previous metrics.We verify the human per-
ceptual and physical alignment of our metric PP-Motion and previ-
ous metrics on 2 subsets of MotionPercept: MDM and FLAME. The
results are shown in Tab. 3. For human perceptual alignment, we
evaluated the “better/worse” classification accuracy. For physical
alignment, we evaluated 3 correlation methods (i.e., PLCC [51],
SROCC [62], KROCC [41] between PP-Motion results and physical
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(a) The original motion contains physically implausible elements 
which are corrected in simulated motion.

(b) The original motion is physically plausible and can be 
accurately imitated in simulation.

Figure 3: Visualized examples for our dataset labeling. Above: Original motion sequence from the MotionPercept dataset. Below:
The motion sequence imitated in the simulator using a per-sequence fine-tuned model.

Table 3: Quantitative comparison of our metric with previous metrics. We report human perceptual accuracy [72] and physical
correlation PLCC [51], SROCC [62], and KROCC [41] on 2 datasets, MotionPercept-MDM and MotionPercept-FLAME. Bold
numbers indicate the best results.

Metrics MotionPercept-MDM MotionPercept-FLAME
Accuracy(%)↑ PLCC↑ SROCC↑ KROCC↑ Accuracy(%)↑ PLCC↑ SROCC↑ KROCC↑

Root AVE [72] 59.47 0.323 0.223 0.150 48.43 0.048 0.135 0.089
Root AE [72] 61.79 0.436 0.412 0.295 59.54 0.135 0.304 0.208
Joint AVE [72] 56.77 0.322 0.239 0.164 44.61 0.072 0.112 0.079
Joint AE [72] 62.73 0.467 0.456 0.327 58.37 0.236 0.377 0.262
PFC [72] 64.79 0.441 0.504 0.364 66.00 0.298 0.451 0.325
Penetration [70] 50.88 0.169 0.082 0.058 56.72 0.229 0.215 0.152
Skating [70] 52.46 0.219 0.132 0.096 56.72 0.092 0.190 0.137
Floating [70] 55.13 0.382 0.318 0.230 55.06 0.478 0.426 0.305
MotionCritic [72] 85.07 0.329 0.316 0.220 67.66 0.152 0.280 0.188
PP-Motion (Ours) 85.18 0.727 0.622 0.461 68.82 0.657 0.660 0.487

Table 4: Pearson’s Correlation Coefficients (PLCC) results on 12 different prompts on HumanAct12 and on the total 40 prompts
of UESTC. HumanAct12 and UESTC are 2 subsets of MotionPercept-MDM. Bold numbers indicate the best results, and underline
numbers indicate the second best results.

Metrics HumanAct12 UESTC TotalP00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11
Root AVE [72] 0.610 0.158 0.129 0.187 0.559 0.559 -0.140 0.050 -0.007 -0.154 0.458 0.181 0.355 0.323
Joint AVE [72] 0.509 0.115 0.177 0.344 0.456 0.576 -0.127 0.278 -0.004 -0.141 0.571 0.018 0.350 0.322
Joint AE [72] 0.738 0.455 0.555 0.220 0.535 0.552 -0.182 -0.010 -0.047 -0.229 0.647 0.147 0.522 0.467
Root AE [72] 0.714 0.564 0.475 0.171 0.568 0.642 -0.242 0.181 -0.019 -0.240 0.629 0.184 0.476 0.436
PFC [72] 0.521 0.099 0.330 0.286 0.478 0.587 0.458 -0.044 -0.012 0.100 0.437 0.255 0.486 0.441
Penetration [70] 0.220 -0.190 -0.137 0.005 0.155 0.275 -0.394 0.173 -0.116 0.059 -0.120 0.219 0.216 0.169
Skating [70] 0.320 -0.257 -0.045 -0.039 0.371 0.201 -0.226 -0.090 -0.077 -0.171 0.078 0.271 0.277 0.219
Floating [70] 0.601 0.341 0.534 0.594 0.344 0.570 0.754 0.021 -0.003 -0.004 0.664 0.425 0.375 0.382
MotionCritic [72] 0.385 0.525 0.438 0.096 0.328 0.334 0.688 -0.284 -0.274 0.163 0.223 0.217 0.302 0.287
PP-Motion (Ours) 0.760 0.983 0.808 0.541 0.699 0.664 0.782 0.272 0.123 0.663 0.568 0.515 0.760 0.727

annotation. The correlation methods are defined in supplemen-
tary materials. Our metric is trained only on the MDM training set
and directly tested on the MotionPercept-MDM validation and the
MotionPercept-FLAME dataset without further finetuning. The re-
sults show that our metric outperforms previous works on physical
alignment. Notably, on human perceptual alignment, our metric
slightly outperforms the baseline method, MotionCritic, which
proves that the physical annotation has the potential to improve
the human perceptual alignment of our metric. We also compare
our metric with existing pose-based metrics (i.e., Root AVE, Root

AE, Joint AVE, Joint AE) and physics-based metrics (i.e., Penetra-
tion, Float, Skate). Detailed definitions of these metrics are provided
in supplementary materials.

Per-category physical alignment. As shown in Tab. 4, Tab. 5,
and Tab. 6, we further report the per-category correlation results
on 12 different prompts of HumanAct12 [21] and 40 prompts of
UESTC [29]. We observe that on most categories, our metric has
the best or the second best correlation with the physical annotation
among all metrics. This further proves the generalizability of our
metric.
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Table 5: Spearman’s Ranking Order Correlation Coefficients (SROCC) on 12 different prompts on HumanAct12 and on UESTC.

Metrics HumanAct12 UESTC TotalP00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11
Root AVE [72] 0.450 0.052 -0.185 0.037 0.372 0.418 -0.280 0.081 0.104 -0.292 0.166 0.262 0.260 0.223
Joint AVE [72] 0.085 0.011 -0.161 0.235 0.040 0.304 -0.073 0.357 -0.117 -0.316 0.338 0.100 0.290 0.239
Joint AE [72] 0.612 0.591 0.578 0.292 0.301 0.485 0.059 -0.028 -0.207 -0.310 0.339 0.203 0.520 0.456
Root AE [72] 0.632 0.537 0.561 0.304 0.509 0.469 -0.055 0.183 -0.184 -0.376 0.269 0.294 0.458 0.412
PFC [72] 0.659 0.404 0.632 0.350 0.533 0.610 0.601 0.004 0.015 -0.197 0.640 0.330 0.541 0.504
Penetration [70] 0.090 -0.394 -0.069 -0.152 0.199 0.032 -0.285 0.127 -0.172 -0.137 -0.048 0.121 0.124 0.082
Skating [70] 0.156 -0.390 0.018 -0.145 0.317 -0.007 -0.057 -0.087 -0.022 -0.276 0.194 0.227 0.173 0.132
Floating [70] 0.330 0.760 0.467 0.569 0.176 0.528 0.716 -0.020 0.109 0.006 0.274 0.236 0.310 0.318
MotionCritic [72] 0.450 0.460 0.400 0.071 0.402 0.373 0.696 -0.357 -0.323 0.052 0.288 0.249 0.299 0.283
PP-Motion (Ours) 0.551 0.593 0.716 0.435 0.596 0.455 0.778 -0.156 -0.013 0.203 0.426 0.545 0.681 0.622

Table 6: Kendall’s Ranking Order Correlation Coefficients (KROCC) on 12 different prompts on HumanAct12 and on UESTC.

Metrics HumanAct12 UESTC TotalP00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11
Root AVE [72] 0.316 0.043 -0.139 0.032 0.249 0.286 -0.189 0.065 0.075 -0.202 0.102 0.166 0.175 0.150
Joint AVE [72] 0.063 0.014 -0.112 0.157 0.028 0.202 -0.068 0.247 -0.058 -0.222 0.246 0.057 0.199 0.164
Joint AE [72] 0.433 0.425 0.419 0.213 0.206 0.339 0.048 -0.021 -0.146 -0.186 0.236 0.147 0.373 0.327
Root AE [72] 0.457 0.387 0.405 0.217 0.355 0.326 -0.033 0.116 -0.126 -0.244 0.199 0.202 0.326 0.295
PFC [72] 0.482 0.275 0.454 0.230 0.386 0.420 0.405 0.016 0.007 -0.128 0.438 0.230 0.392 0.364
Penetration [70] 0.057 -0.271 -0.049 -0.111 0.136 0.021 -0.203 0.084 -0.128 -0.095 -0.027 0.086 0.088 0.058
Skate [70] 0.107 -0.272 0.015 -0.101 0.225 -0.007 -0.025 -0.077 -0.008 -0.200 0.133 0.165 0.125 0.096
Float [70] 0.236 0.572 0.308 0.409 0.123 0.373 0.521 -0.017 0.072 0.009 0.196 0.161 0.225 0.230
MotionCritic [72] 0.318 0.315 0.278 0.038 0.279 0.245 0.507 -0.232 -0.221 0.038 0.191 0.167 0.208 0.197
PP-Motion (Ours) 0.398 0.431 0.515 0.300 0.435 0.320 0.586 -0.101 -0.015 0.140 0.285 0.349 0.509 0.461

Table 7: Ablation studies on different loss functions and training strategies.

Metrics MotionPercept-MDM MotionPercept-FLAME
Accuracy(%)↑ SROCC↑ KROCC↑ PLCC↑ Accuracy(%)↑ SROCC↑ KROCC↑ PLCC↑

MotionCritic 85.07 0.3290 0.3160 0.2200 67.66 0.1520 0.2797 0.1875
w/o prompt categorization 85.61 0.5191 0.3791 0.6146 70.98 0.6422 0.4649 0.6347
MSE loss 84.29 0.6000 0.4446 0.6357 69.48 0.6059 0.4446 0.5797
PP-Motion (Ours) 85.18 0.6223 0.4612 0.7268 68.82 0.6598 0.4873 0.6567

Table 8: Comparison of MDMmodel performance before and
after finetuning with our metric. PP-Motion is the average
predicted score of our metric. Mean MPJPE is the mean per-
joint position error between simulated motion and ground
truth motion.

PP-Motion↑ Mean MPJPE↓
Before Fine-tuning -0.09 76.06
Fine-tune 100 steps 0.61 63.33

Ablation studies. We perform ablation studies to validate our
metric designs, with results presented in Tab. 7. First, in “w/o
prompt categorization”, we examine the impact of a prompt-
categorized training strategy by training directly on theMotionPercept-
MDM dataset without categorizing by prompt labels. The prompt-
categorized training approach is detailed in supplementary mate-
rials. The results demonstrate that computing PLCC loss within
the same-label motion groups achieves better results in physical
correlation metrics. Second, in “MSE loss”, we train the metric
with MSE loss, which calculates the 𝑙2 distance between the pre-
dicted score and GT annotation. The results show that replacing
PLCC loss with conventional MSE optimization leads to noticeable

degradation in both physical plausibility assessment and human
evaluation metrics.

Improving motion generation with PP-Motion.We try to
improve the motion generation method MDM [67] to further verify
our metric’s physical fidelity alignment. We fine-tune the MDM
network using our metric, along with critic loss and KL loss from
[72]. The critic loss for the input pose 𝑥 ′0 is defined as:

LCritic = E
[
−𝜎

(
𝜏 − 𝐹

(
𝑥 ′0
) ) ]

, (9)

where 𝜏 is the threshold of sigmoid function 𝜎 (·), and E is the
expectation on the whole dataset. The KL loss is defined as

LKL = E
[
𝐷KL

(
𝑝 (𝑥 ′0) | 𝑝 (𝑥 ′0)

)]
, (10)

where 𝐷KL is KL divergence, and 𝑥 ′0 is the pervious iteration of 𝑥 ′0.
We fine-tune the MDM model for 100 steps and generate 120

motion sequences each using the MDM baseline model and the fine-
tuned model. Then we fine-tune each motion on PHC, following
the procedure described in Sec. 4, and calculate the mean MPJPE
between the motion simulated in Isaac and the ground truth motion
generated by MDM. The results reported in Tab. 8 show that our
metric can improve physical alignment in motion generation.
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Figure 4: (a) A MotionPercept better/worse data pair: the motion on the left, annotated as ‘better’ and visually superior, exhibits
physics issues (e.g. floating, skating). The motion on the right, annotated as ‘worse’ and visually inferior, shows greater
physical plausibility. (b) Three MotionPercept samples in a group, all annotated as ‘worse’ by humans, reveal different physical
characteristics in the simulator. Our PP-Motion scores (higher means better) successfully capture these physical distinctions.

Visualization. Fig. 4 (a) shows a better/worse data pair sampled
from the MotionPercept dataset. The motion on the left (anno-
tated as ‘better’ and visually superior) exhibits physics issues (e.g.
floating, skating) in the simulator, while the motion on the right
(annotated as ‘worse’ and visually inferior) demonstrates greater
physical plausibility when simulated. Fig. 4 (b) shows three Mo-
tionPercept samples in a group that are all annotated as ‘worse’,
but reveal different physical characteristics in the simulator. Our
PP-Motion scores successfully capture these physical distinctions.
Note that for our PP-Motion score, the higher reveals the better.

6 Conclusion
In this work, we address the challenges in evaluating the fidelity
of generated human motions by bridging the gap between human

perception and physical feasibility. We introduce a novel physical
labeling method that computes the minimum adjustments needed
for a motion to adhere to physical laws, thereby producing fine-
grained, continuous physical alignment annotations as objective
ground truth. Our framework leverages Pearson’s correlation loss to
capture the underlying physical priors, while integrating a human-
based perceptual fidelity loss to ensure that the evaluation metric
reflects both physical fidelity and human perception. Experimental
results validate that our metric not only complies with physical laws
but also demonstrates superior alignment with human perception
compared to previous approaches.
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